A SVM Cascade for Agreement/Disagreement Classification

نویسندگان

  • Pierre Andrews
  • Suresh Manandhar
چکیده

This article describes a method for classifying dialogue utterances and detecting the interlocutor’s agreement or disagreement. This labelling can help improve dialogue management by providing additional information on the utterance’s content without deep parsing. The proposed technique improves upon state of the art approaches by using a Support Vector Machine cascade. A combination of three binary support vector machines in a cascade is employed to filter out utterances that are easy to classify, thus reducing the noise in the learning of labels for more ambiguous utterances. The approach achieves higher accuracy (by 2.47%) than the state of the art while using a simpler approach which relies only on shallow local features of the utterances. RÉSUMÉ. Dans cet article, nous décrivons une méthode de classification d’uttérances destinée à la detection d’accord/désaccord dans le dialogue homme-machine. L’étiquetage du dialogue peut être utilisé par le dialogue manager sans avoir à effectuer de parse complexe. Nous proposons une technique de classification à base d’une hiérarchie de classificateurs Support Vector Machines. Une combinaison de trois classificateurs binaires est utilisée pour filtrer les classes pour lesquelles le corpus contient beaucoup d’information et se concentrer sur les classes plus ambigües. Cet article présente une analyse détaillée des traits caractéristiques de classification et propose une amélioration de 2.47% sur l’état de l’art tout en utilisant un modèle de classification plus performant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting the Classification Performance of Support Vector Machines with Multi-Temporal Moderate-Resolution Imaging Spectroradiometer (MODIS) Data in Areas of Agreement and Disagreement of Existing Land Cover Products

Several studies have focused in the past on global land cover (LC) datasets harmonization and inter-comparison and have found significant inconsistencies. Despite the known discrepancies between existing products derived from medium resolution satellite sensor data, little emphasis has been placed on examining these disagreements to improve the overall classification accuracy of future land cov...

متن کامل

Support Vector Machines on Large Data Sets: Simple Parallel Approaches

Support Vector Machines (SVMs) are well-known for their excellent performance in the field of statistical classification. Still, the high computational cost due to the cubic runtime complexity is problematic for larger data sets. To mitigate this, Graf et al. (2005) proposed the Cascade SVM. It is a simple, stepwise procedure, in which the SVM is iteratively trained on subsets of the original d...

متن کامل

APPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES

An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...

متن کامل

Ethical Agreement and Disagreement about Obesity Prevention Policy in the United States

An active area of public health policy in the United States is policy meant to promote healthy eating, reduce overconsumption of food, and prevent overweight/obesity. Public discussion of such obesity prevention policies includes intense ethical disagreement. We suggest that some ethical disagreements about obesity prevention policies can be seen as rooted in a common concern with equality or w...

متن کامل

Comparing pixel-based and object-based algorithms for classifying land use of arid basins (Case study: Mokhtaran Basin, Iran)

In this research, two techniques of pixel-based and object-based image analysis were investigated and compared for providing land use map in arid basin of Mokhtaran, Birjand. Using Landsat satellite imagery in 2015, the classification of land use was performed with three object-based algorithms of supervised fuzzy-maximum likelihood, maximum likelihood, and K-nearest neighbor. Nine combinations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • TAL

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2009